Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1173-1186, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29807053

RESUMO

Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.


Assuntos
Proteínas Oncogênicas v-abl/metabolismo , Transcrição Gênica , Fator de Transcrição YY1/química , Fator de Transcrição YY1/metabolismo , Benzamidas/farmacologia , Sequência Conservada , Técnicas de Inativação de Genes , Inativação Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mesilato de Imatinib/farmacologia , Células MCF-7 , Proteínas Oncogênicas v-abl/genética , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , Tirosina/química
2.
Acad Med ; 93(3): 451-455, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29045273

RESUMO

PROBLEM: Developing a national pragmatic clinical trial infrastructure is central to understanding the effectiveness of interventions applied under usual conditions and where people receive health care. To address this challenge, three Florida universities-the University of Florida Clinical and Translational Science Institute, Florida State University (with its community-based distributive medical education model), and the University of Miami-created (2010-2013) a statewide consortium, the OneFlorida Clinical Research Consortium, to support the conduct of pragmatic clinical trials and provide mentored research experiences for medical and graduate students in real-world practice settings. APPROACH: OneFlorida has four programs, which report to a steering committee with membership from each partner, community members, and the state Medicaid agency and Department of Health to ensure shared governance. The Clinical Research Program provides support to conduct research in the network and uses champions to engage community clinicians. The Citizen Scientist Program has community members who provide input on health topics of importance to them, study design, recruitment and retention strategies, and the interpretation of findings. The Data Trust Program contains electronic health record and health care claims data for 10.6 million Floridians. The Minority Education Program, in collaboration with three historically black colleges and universities, offers minority junior faculty mentoring in pragmatic clinical trials and implementation science. OUTCOMES: OneFlorida has implemented 27 studies with diverse patient populations and in diverse community practice settings. NEXT STEPS: To identify evidence-based best practices from the clinical trials conducted in the network, foster their implementation, and expand research training opportunities.


Assuntos
Guias de Prática Clínica como Assunto/normas , Ensaios Clínicos Pragmáticos como Assunto/instrumentação , Pesquisa Translacional Biomédica/instrumentação , Academias e Institutos , Competência Clínica , Educação Médica , Florida , Humanos , Colaboração Intersetorial , Ensaios Clínicos Pragmáticos como Assunto/métodos , Pesquisa Translacional Biomédica/métodos
3.
Crit Rev Oncog ; 22(1-2): 109-129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29604940

RESUMO

The multifunctional protein Yin Yang 1 (YY1) plays critical roles in tumorigenesis. YY1 has been shown to be involved in the development, progression, resistance, and invasiveness of many types of cancers. Today, the value of YY1 as a prognostic marker and as a potential target in cancer therapy is being explored by multiple research groups around the world. Over the past 25 years, we have accumulated a wealth of information about the wide-ranging biological functions of YY1 at the molecular, cellular, and organismal levels. However, our knowledge of how YY1 is regulated and what regulates it has lagged behind. In the past few years, there has been a significant increase in the research addressing this issue. In this review, we summarize and analyze recent findings about the regulation of YY1 at multiple levels. We emphasize the necessity for deeper insights into these regulatory mechanisms if YY1 is to find its way to the clinical setting.


Assuntos
Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias/genética , Fator de Transcrição YY1/genética , Progressão da Doença , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias/patologia
4.
Oncotarget ; 6(3): 1446-61, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25575812

RESUMO

TOPK/PBK is an oncogenic kinase upregulated in most human cancers and its high expression correlates with poor prognosis. TOPK is known to be activated by Cdk1 and needed for mitotic cell division; however, its mitotic functions are not yet fully understood. In this study, we show that TOPK plays a global mitotic role by simultaneously regulating hundreds of DNA binding proteins. C2H2 zinc finger proteins (ZFPs) constitute the largest family of human proteins. All C2H2 ZFPs contain a highly conserved linker sequence joining their multi-zinc finger domains. We have previously shown that phosphorylation of this conserved motif serves as a global mechanism for the coordinate dissociation of C2H2 ZFPs from condensing chromatin, during mitosis. Here, using a panel of kinase inhibitors, we identified K252a as a potent inhibitor of mitotic ZFP linker phosphorylation. We generated a biotinylated form of K252a and used it to purify candidate kinases. From these candidates we identified TOPK/PBK, in vitro and in vivo, as the master ZFP linker kinase. Furthermore, we show precise temporal correlation between TOPK activating phosphorylation by Cdk1 and linker phosphorylation in mitosis. The identification of this fundamental role of TOPK underscores its significance as a promising novel target of cancer therapeutics.


Assuntos
Proteínas de Transporte/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Carbazóis/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Alcaloides Indólicos/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Repressoras
5.
J Cell Sci ; 126(Pt 18): 4173-86, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23843611

RESUMO

The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases.


Assuntos
Proteínas 14-3-3/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas 14-3-3/genética , Dineínas , Chaperonas Moleculares/genética , Dobramento de Proteína , Proteínas/metabolismo , Transfecção
6.
Mol Biol Cell ; 24(5): 566-77, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283988

RESUMO

In all eukaryotic cells, DNA is packaged into multiple chromosomes that are linked to microtubules through a large protein complex called a kinetochore. Previous data show that the kinetochores are clustered together during most of the cell cycle, but the mechanism and the biological significance of kinetochore clustering are unknown. As a kinetochore protein in budding yeast, the role of Slk19 in the stability of the anaphase spindle has been well studied, but its function in chromosome segregation has remained elusive. Here we show that Slk19 is required for kinetochore clustering when yeast cells are treated with the microtubule-depolymerizing agent nocodazole. We further find that slk19Δ mutant cells exhibit delayed kinetochore capture and chromosome bipolar attachment after the disruption of the kinetochore-microtubule interaction by nocodazole, which is likely attributed to defective kinetochore clustering. In addition, we show that Slk19 interacts with itself, suggesting that the dimerization of Slk19 may mediate the interaction between kinetochores for clustering. Therefore Slk19 likely acts as kinetochore glue that clusters kinetochores to facilitate efficient and faithful chromosome segregation.


Assuntos
Segregação de Cromossomos/genética , DNA/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Anáfase/genética , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos/genética , Cromossomos/ultraestrutura , DNA/efeitos dos fármacos , Cinetocoros/efeitos dos fármacos , Cinetocoros/ultraestrutura , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitose/genética , Mutação , Nocodazol/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/genética
7.
PLoS One ; 7(11): e50645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226345

RESUMO

Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.


Assuntos
Divisão Celular , Fase G2 , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição YY1/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Aurora Quinase A , Aurora Quinase B , Aurora Quinase C , Aurora Quinases , DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitose , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Serina/metabolismo , Transcrição Gênica , Fator de Transcrição YY1/química
8.
Acad Med ; 87(12): 1699-704, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23095920

RESUMO

The Florida State University College of Medicine (FSU COM) was established in 2000, the first new MD-granting medical school in the United States in over 25 years. In its brief history, the FSU COM has developed rapidly in accordance with its founding mission to meet the need for primary care physicians, especially those caring for the elderly and the underserved. The school recently received a full continuation of accreditation for the maximum period, eight years, from the Liaison Committee on Medical Education.The authors describe FSU COM's new, innovative educational program using community-based clinical training on six statewide regional campuses and two rural sites. Third- and fourth-year students are assigned to community physicians in a one-on-one clinical training model in all of the settings where physicians practice. Over 70% of student clinical training is in such settings. The authors describe how the model operates, including curricular oversight (which ensures quality and equivalence of the educational experience at all sites), the regional campus structure, administration, education program delivery during core clerkships, and assessment of students' performance. Ongoing required faculty development for all clerkship faculty is an essential feature of the training program, as is tracking of all individual student contacts through an online clinical data collection system used for evaluation of the clerkship experiences as well as research.The authors demonstrate that the school has been highly successful in implementing its mission, and that the challenge ahead is to sustain its approach to the training of future physicians.


Assuntos
Educação de Graduação em Medicina/organização & administração , Modelos Educacionais , Faculdades de Medicina/organização & administração , Estágio Clínico , Serviços de Saúde Comunitária/organização & administração , Currículo , Avaliação Educacional , Florida , Humanos , Estudantes de Medicina , Comunicação por Videoconferência
9.
Nucleic Acids Res ; 40(4): 1596-608, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22064860

RESUMO

DXZ4 is an X-linked macrosatellite composed of 12-100 tandemly arranged 3-kb repeat units. In females, it adopts opposite chromatin arrangements at the two alleles in response to X-chromosome inactivation. In males and on the active X chromosome, it is packaged into heterochromatin, but on the inactive X chromosome (Xi), it adopts a euchromatic conformation bound by CTCF. Here we report that the ubiquitous transcription factor YY1 associates with the euchromatic form of DXZ4 on the Xi. The binding of YY1 close to CTCF is reminiscent of that at other epigenetically regulated sequences, including sites of genomic imprinting, and at the X-inactivation centre, suggesting a common mode of action in this arrangement. As with CTCF, binding of YY1 to DXZ4 in vitro is not blocked by CpG methylation, yet in vivo both proteins are restricted to the hypomethylated form. In several male carcinoma cell lines, DXZ4 can adopt a Xi-like conformation in response to cellular transformation, characterized by CpG hypomethylation and binding of YY1 and CTCF. Analysis of a male melanoma cell line and normal skin cells from the same individual confirmed that a transition in chromatin state occurred in response to transformation.


Assuntos
Carcinoma/genética , Cromossomos Humanos X/metabolismo , Proteínas Repressoras/metabolismo , Sequências de Repetição em Tandem , Fator de Transcrição YY1/metabolismo , Sequência de Bases , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Células Cultivadas , Cromatina/metabolismo , Cromossomos Humanos X/química , Sequência Consenso , Ilhas de CpG , Metilação de DNA , Feminino , Histonas/metabolismo , Humanos , Masculino , Fator de Transcrição YY1/análise
10.
Mol Cell Biol ; 32(4): 797-807, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22184066

RESUMO

In this report, we describe the phosphorylation of Yin Yang 1 (YY1) in vitro and in vivo by CK2α (casein kinase II), a multifunctional serine/threonine protein kinase. YY1 is a ubiquitously expressed multifunctional zinc finger transcription factor implicated in regulation of many cellular and viral genes. The products of these genes are associated with cell growth, the cell cycle, development, and differentiation. Numerous studies have linked YY1 to tumorigenesis and apoptosis. YY1 is a target for cleavage by caspases in vitro and in vivo as well, but very little is known about the mechanisms that regulate its cleavage during apoptosis. Here, we identify serine 118 in the transactivation domain of YY1 as the site of CK2α phosphorylation, proximal to a caspase 7 cleavage site. CK2α inhibitors, as well as knockdown of CK2α by small interfering RNA, reduce S118 phosphorylation in vivo and enhance YY1 cleavage under apoptotic conditions, whereas increased CK2α activity by overexpression in vivo elevates S118 phosphorylation. A serine-to-alanine substitution at serine 118 also increases the cleavage of YY1 during apoptosis compared to wild-type YY1. Taken together, we have discovered a regulatory link between YY1 phosphorylation at serine 118 and regulation of its cleavage during programmed cell death.


Assuntos
Caspase 7/metabolismo , Fator de Transcrição YY1/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoptose/fisiologia , Sequência de Bases , Sítios de Ligação , Caseína Quinase II/metabolismo , Primers do DNA/genética , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Fator de Transcrição YY1/química , Fator de Transcrição YY1/genética
11.
Cell Cycle ; 10(19): 3327-36, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21941085

RESUMO

Cessation of transcriptional activity is a hallmark of cell division. Many biochemical pathways have been shown and proposed over the past few decades to explain the silence of this phase. In particular, many individual transcription factors have been shown to be inactivated by phosphorylation. In this report, we show the simultaneous phosphorylation and mitotic redistribution of a whole class of modified transcription factors. C(2)H(2) zinc finger proteins (ZFPs) represent the largest group of gene expression regulators in the human genome. Despite their diversity, C(2)H(2) ZFPs display striking conservation of small linker peptides joining their adjacent zinc finger modules. These linkers are critical for DNA binding activity. It has been proposed that conserved phosphorylation of these linker peptides could be a common mechanism for the inactivation of the DNA binding activity of C(2)H(2) ZFPs, during mitosis. Using a novel antibody, raised against the phosphorylated form of the most conserved linker peptide sequence, we are able to visualize the massive and simultaneous mitotic phosphorylation of hundreds of these proteins. We show that this wave of phosphorylation is tightly synchronized, starting in mid-prophase right after DNA condensation and before the breakdown of the nuclear envelope. This global phosphorylation is completely reversed in telophase. In addition, the exclusion of the phospho-linker signal from condensed DNA clearly demonstrates a common mechanism for the mitotic inactivation of C(2)H(2) ZFPs.


Assuntos
Proteínas de Transporte/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Anticorpos/imunologia , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Peptídeos/química , Peptídeos/imunologia , Peptídeos/farmacologia , Fosforilação , Proteínas Repressoras , Telófase , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/imunologia , Fator de Transcrição YY1/metabolismo
12.
PLoS One ; 6(1): e15928, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253604

RESUMO

Yin-Yang 1 (YY1) is an essential multifunctional zinc-finger protein. It has been shown over the past two decades to be a critical regulator of a vast array of biological processes, including development, cell proliferation and differentiation, DNA repair, and apoptosis. YY1 exerts its functions primarily as a transcription factor that can activate or repress gene expression, dependent on its spatial and temporal context. YY1 regulates a large number of genes involved in cell cycle transitions, many of which are oncogenes and tumor-suppressor genes. YY1 itself has been classified as an oncogene and was found to be upregulated in many cancer types. Unfortunately, our knowledge of what regulates YY1 is very minimal. Although YY1 has been shown to be a phosphoprotein, no kinase has ever been identified for the phosphorylation of YY1. Polo-like kinase 1 (Plk1) has emerged in the past few years as a major cell cycle regulator, particularly for cell division. Plk1 has been shown to play important roles in the G/M transition into mitosis and for the proper execution of cytokinesis, processes that YY1 has been shown to regulate also. Here, we present evidence that Plk1 directly phosphorylates YY1 in vitro and in vivo at threonine 39 in the activation domain. We show that this phosphorylation is cell cycle regulated and peaks at G2/M. This is the first report identifying a kinase for which YY1 is a substrate.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Fase G2 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição YY1/metabolismo , Células HeLa , Humanos , Fosforilação , Especificidade por Substrato , Treonina/metabolismo , Fatores de Transcrição/metabolismo , Quinase 1 Polo-Like
13.
J Natl Med Assoc ; 103(9-10): 822-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22364049

RESUMO

OBJECTIVE: To identify contributors to the success of students in medical school that graduate from a 1-year postbaccalaureate bridge program. METHOD: In 2010, using rigorous qualitative methodology, the principal investigator interviewed a random sample of 15 (23%) of current and past graduates of The Florida State University College of Medicine Bridge program. The investigators recorded and transcribed the interviews, utilized consensual qualitative research methodology to analyze the data, and identified an overarching theoretical construct. RESULTS: Content analysis of all 15 interviews yielded 73 themes, which were grouped into 6 broad categories/domains: The Florida State University College of Medicine Bridge Program attributes, personal attributes, proof of competence, support systems, exposure to medical programs, and faith/religion. CONCLUSION: Postbaccalaureate programs prepare students for success in medical school. The Florida State University College of Medicine Bridge Program has been particularly successful in identifying and educating students who demonstrated promise upon application, despite noncompetitive grades and Medical College Admission Test scores. The authors identify the characteristics and individual experiences of the students and program that relate to success.


Assuntos
Educação Pré-Médica , Grupos Minoritários/educação , Estudantes de Medicina , Adulto , Educação Pré-Médica/organização & administração , Avaliação Educacional , Escolaridade , Feminino , Florida , Humanos , Masculino , Pesquisa Qualitativa , Faculdades de Medicina
15.
Protein Expr Purif ; 74(2): 289-97, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20558296

RESUMO

Neuronal Src (n-Src) is an alternative isoform of Src kinase containing a 6-amino acid insert in the SH3 domain that is highly expressed in neurons of the central nervous system (CNS). To investigate the function of n-Src, wild-type n-Src, constitutively active n-Src in which the C-tail tyrosine 535 was mutated to phenylalanine (n-Src/Y535F) and inactive n-Src in which the lysine 303 was mutated to arginine in addition to the mutation of Y535F (n-Src/K303R/Y535F), were expressed and purified from Escherichia coli BL21(DE3) cells. We found that all three types of n-Src constructs expressed at very high yields (∼500 mg/L) at 37°C, but formed inclusion bodies. In the presence of 8M urea these proteins could be solubilized, purified under denaturing conditions, and subsequently refolded in the presence of arginine (0.5M). These Src proteins were enzymatically active except for the n-Src/K303R/Y535F mutant. n-Src proteins expressed at 18°C were soluble, albeit at lower yields (∼10-20 mg/L). The lowest yields were for n-Src/Y535F (∼10 mg/L) and the highest for n-Src/K303R/Y535F (∼20 mg/L). We characterized the purified n-Src proteins expressed at 18°C. We found that altering n-Src enzyme activity either pharmacologically (e.g., application of ATP or a Src inhibitor) or genetically (mutation of Y535 or K303) was consistently associated with changes in n-Src stability: an increase in n-Src activity was coupled with a decrease in n-Src stability and vice versa. These findings, therefore, indicate that n-Src activity and stability are interdependent. Finally, the successful production of functionally active n-Src in this study indicates that the bacterial expression system may be a useful protein source in future investigations of n-Src regulation and function.


Assuntos
Quinases da Família src/genética , Quinases da Família src/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Escherichia coli/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Camundongos , Mutação Puntual , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Quinases da Família src/química
16.
Mol Biol Cell ; 20(22): 4766-76, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19793915

RESUMO

Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.


Assuntos
DNA/metabolismo , Mitose/fisiologia , Fator de Transcrição YY1/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA/genética , Regulação da Expressão Gênica , Células HeLa/efeitos dos fármacos , Células HeLa/fisiologia , Humanos , Mitose/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Nocodazol/farmacologia , Fosforilação , Serina/metabolismo , Treonina/metabolismo , Moduladores de Tubulina/farmacologia , Fator de Transcrição YY1/genética
18.
PLoS One ; 3(12): e3943, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19079774

RESUMO

BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.


Assuntos
Fase G1/genética , Regulação da Expressão Gênica , Animais , Bromodesoxiuridina/metabolismo , Células CHO , Cricetinae , Cricetulus , Regulação para Baixo/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Genoma Humano/genética , Células HeLa , Histonas/genética , Humanos , Mitose/genética , Estresse Mecânico , Regulação para Cima/genética
19.
Proc Natl Acad Sci U S A ; 105(42): 16177-82, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18845678

RESUMO

The temporal phosphorylation of cell cycle-related proteins by cyclin-dependent kinases (Cdks) is critical for the correct order of cell cycle events. In budding yeast, CDC28 encodes the only Cdk and its association with various cyclins governs the temporal phosphorylation of Cdk substrates. S-phase Cdk substrates are phosphorylated earlier than mitotic Cdk substrates, which ensures the sequential order of DNA synthesis and mitosis. However, it remains unclear whether Cdk substrates are dephosphorylated in temporally distinct windows. Cdc14 is a conserved protein phosphatase responsible for the dephosphorylation of Cdk substrates. In budding yeast, FEAR (Cdc14 early anaphase release) and MEN (mitotic exit network) activate phosphatase Cdc14 by promoting its release from the nucleolus in early and late anaphase, respectively. Here, we show that the sequential Cdc14 release and the distinct degradation timing of different cyclins provides the molecular basis for the differential dephosphorylation windows of S-phase and mitotic cyclin substrates. Our data also indicate that FEAR-induced dephosphorylation of S-phase Cdk substrates facilitates anaphase progression, revealing an extra layer of mitotic regulation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Mitose , Saccharomycetales/citologia , Saccharomycetales/enzimologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Ciclinas/metabolismo , Mutação/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Saccharomycetales/genética , Especificidade por Substrato , Fatores de Tempo
20.
Acad Med ; 80(11): 973-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16249293

RESUMO

In 2000, the Florida State University (FSU) College of Medicine was founded, becoming the first new allopathic medical school in the United States in over 20 years. The new medical school was to use community-based clinical training for the education of its students, create a technology-rich environment, and address primary care health needs of Florida's citizens, especially the elderly, rural, minorities, and underserved. The challenges faced during the creation of the new school, including accreditation and a leadership change, as well as accomplishments are described here. The new school admits a diverse student body made possible through its extensive outreach programs, fosters a humane learning environment through creation of student learning communities, has a distributed clinical training model-with clinical campuses in Orlando, Pensacola, Sarasota and Tallahassee, and with 70% of training occurring in ambulatory settings-and utilizes 21st-century information technology. The curriculum focuses on patient-centered clinical training, using the biopsychosocial model of patient care throughout the entire medical curriculum, promotes primary care and geriatrics medicine through longitudinal community experiences, relies on a hybrid curriculum for delivery of the first two years of medical education with half of class sessions occurring in small groups and on a continuum of clinical skills development throughout the first three years, and uses an interdisciplinary departmental model for faculty, which greatly facilitates delivery of an integrated curriculum. The first class was admitted in 2001 and graduated in May 2005. In February 2005, the FSU College of Medicine received full accreditation from the Liaison Committee on Medical Education.


Assuntos
Modelos Educacionais , Faculdades de Medicina/organização & administração , Currículo , Educação Médica/história , Educação Médica/métodos , Florida , História do Século XX , História do Século XXI , Humanos , Liderança , Cultura Organizacional , Atenção Primária à Saúde , Critérios de Admissão Escolar , Faculdades de Medicina/história , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...